Generalized alternating direction method of multipliers: new theoretical insights and applications

نویسندگان

  • Ethan X. Fang
  • Bingsheng He
  • Han Liu
  • Xiaoming Yuan
چکیده

Recently, the alternating direction method of multipliers (ADMM) has received intensive attention from a broad spectrum of areas. The generalized ADMM (GADMM) proposed by Eckstein and Bertsekas is an efficient and simple acceleration scheme of ADMM. In this paper, we take a deeper look at the linearized version of GADMM where one of its subproblems is approximated by a linearization strategy. This linearized version is particularly efficient for a number of applications arising from different areas. Theoretically, we show the worst-case 𝒪(1/k) convergence rate measured by the iteration complexity (k represents the iteration counter) in both the ergodic and a nonergodic senses for the linearized version of GADMM. Numerically, we demonstrate the efficiency of this linearized version of GADMM by some rather new and core applications in statistical learning. Code packages in Matlab for these applications are also developed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...

متن کامل

A symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming

This paper introduces a symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming with linear equality constraints, which inherits the superiorities of the classical alternating direction method of multipliers (ADMM), and which extends the feasible set of the relaxation factor α of the generalized ADMM to the infinite interval [F...

متن کامل

On the O(1/t) convergence rate of Eckstein and Bertsekas’s generalized alternating direction method of multipliers

This note shows the O(1/t) convergence rate of Eckstein and Bertsekas’s generalized alternating direction method of multipliers in the context of convex minimization with linear constraints.

متن کامل

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

On the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions

In this paper, we establish the convergence properties for a majorized alternating direction method of multipliers for linearly constrained convex optimization problems,whose objectives contain coupled functions.Our convergence analysis relies on the generalized Mean-Value Theorem, which plays an important role to properly control the cross terms due to the presence of coupled objective functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical programming computation

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2015